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Measurements of contaminant concentration at a hazardous waste site typically
vary over many orders of magnitude and have highly skewed distributions. This
work presents a practical methodology for the estimation of solute concentration
contour maps and volume averages (needed for mass calculations) from data
obtained from the analysis of water and soil samples. The methodology, which is
an extension of linear geostatistics, produces a point estimate, i.e., a representa-
tive value, as well as a confidence interval, which contains the true value with a
given probability. The approach uses a parsimonious model that accounts for the
skewness by adding only one parameter to those used in linear geostatistics
(variograms or generalized covariances). The resulting nonlinear kriging method
is not substantially more difficult to use than linear geostatistics. The
methodology is most appropriate when concentration measurements are available
on a reasonably dense grid and no additional information (based on modeling
flow and transport) can be used. We present and illustrate through an application,
a practical approach to estimate all the parameters needed and to select and test
the model. Copyright © 1996 Elsevier Science Ltd
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estimation, maximum likelihood, restricted maximum likelihood, transforma-
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Geostatistical interpolation of chemical

INTRODUCTION

In the management of hazardous waste sites, one often
has to estimate from available measurements the spatial
extent of contaminant plumes or the total mass of
chemicals (see Semprini et al.'). This information is
essential in monitoring the progress of remediation for
technical or legal purposes; it is also important in
selecting the location and capacity of pumping wells in
hydraulic containment and pump-and-treat systems or in
designing enhanced in situ bioremediation projects. The
most common method of measuring concentration is
through the laboratory analysis of water and soil samples
obtained in monitoring wells and soil borings, although
soil-gas analysis and geophysical exploration techniques
are sometimes used to complement the database. This
work focuses on the geostatistical analysis of water- and
soil-sample data. These measurements, which are typically
a few dozen in number, vary over orders of magnitude and
are arranged nonuniformly in space.

For illustration, Fig. 1 shows the histogram of data of
trichloroethylene (TCE) in a vertical cross-section. One
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can see that the data are highly skewed. Even if one
disregards analytical difficulties in the laboratory and
uncertainties in the soil-water partition coefficients, the
spatial variability in the observations makes it impos-
sible to infer the exact location of the plume or the
precise weight of the contaminants. In most cases, a
cursory look at the data should make it obvious that one
must provide an error bar that describes the reliability of
any estimate. '
Univariate statistical methods of data analysis, which
treat the data as independent, are not applicable because
data vary according to their relative location in space.
For example, to compute the total mass of a substance,
it would not be reasonable to assign equal weights to all
concentration measurements because it is common to
have more measurements near the center of the plume
than elsewhere; instead, one should assign weights to
measurements which are representative of the area of
influence of each measurement. Linear geostatistical
methods (also known as Best Linear Unbiased Estima-
tion or BLUE methods®? ) account for spatial variability
and are practical tools that have been applied in many
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Fig. 1. Histogram of TCE concentration (umol/liter) in a
transect.

fields. They include the popular ordinary and universal
kriging methods and are in some important ways similar
to the prevalent methods of applied statistics.*™’

At first appearance, BLUE methods are applicable
independently of distributional considerations because
their derivation does not seem to assume any particular
probability distribution. However, each step in the
derivation of the BLUE methods makes better sense
when some implicit conditions are met. Consider each
step:

1. “The estimator is a linear function of the measure-
ments.” But such an estimator may be a poor
choice for highly skewed, multimodal, or heavy-
tailed distributions.

2. “The estimation error (which is modeled in
estimation theory as a random variable) must
have zero mean.” However, if the estimation
error has a severely skewed or bimodal distribu-
tion, its mean is not necessarily a satisfactory
representative value and making the mean vanish
may be less reasonable than, say, requiring that the
median vanish.,

3. “The estimation error is required to have as small a
variance as possible.” However, for an arbitrary
distribution, the variance is not the sole measure of
spread so that attempting to reduce the variance does
not necessarily assure small errors. If the distribution
of the errors is highly skewed, it may be far more
relevant to applications to develop estimators that
clip the tail of the error distribution, in order to reduce
the chance of a very large error.

If it is somehow given that the probabilities are
described through the multi-Gaussian distribution, the
conditional mean is indeed a linear function of the data
so that it is mathematically well established that in this
special case the BLUE method is “optimal.” If another
distribution is given, one can in principle derive an
estimator that is generally better in the variance or some
other feature than the BLUE one.

Of course, in practical statistical modeling (as
opposed to theoretic probabilistic analysis), it is data
and not the distribution that is “given.” For a BLUE
method to make sense, the error distribution must not
deviate dramatically from the Gaussian (normal) one.
Then, requiring that the mean error be zero on the
average and with as small a variance as possible assures
minimization of the error in a generally acceptable
sense. The cycle of the application of a BLUE method
starts by assuming that the error is approximately
Gaussian distributed and must close by testing this
assumption against the experimental data. This is
achieved by investigating the normality of residuals
(i.e., whether the differences between observations and
predictions follow a Gaussian distribution) through
appropriate statistical tests, as discussed in Kitanidis.®
This approach is universally accepted in applications of
best linear unbiased estimation theory throughout
statistics (e.g., see Belsley et al.’ p. 18; Draper and
Smith,’ Chapter 3 and references therein).

It is emphasized that the validity of the approach in
geostatistics is not based on the metaphysical question
of whether the sampled process is truly multi-Gaussian.
It is not necessary, not possible, and perhaps not
meaningful to demonstrate from a finite sample that
the field is indeed multi-Gaussian. Nevertheless, it is
customary in statistics (where only low order statistics,
i.e., first two moments are employed) to use the multi-
Gaussian model as a guide to develop effective para-
meter estimation methods and tests.*~’ The results are
usually insensitive to moderate deviations from the
multi-Gaussian assumption and can be supported using
intuitive least-squares arguments. For example, the
restricted maximum likelihood method (which can be
used to estimate variograms) can be interpreted as
modified least-squares fitting or “cross-validation.”?

In the analysis of concentration data the problem is
that estimation errors may vary over orders of
magnitude, depending on whether the estimated con-
centration is at a “hot spot,” and are highly skewed.
Linear estimation methods (such as ordinary kriging) do
not perform well because the distribution of estimation
errors is not described adequately by the mean and the
mean square value. One particular disturbing feature is
that the concentration 95% confidence interval may
include negative values. This leaves for consideration
nonlinear geostatistical methods such as disjunctive,
indicator, and probability kriging. Although in theory
these methods have significant potential, in practice
their applicability is limited because:

1. In the authors’ opinion, practicable methods for
parameter estimation and model testing for these
methods have yet to be developed. Thus, the
practitioner has little guidance in evaluating the
validity of the model or in choosing the right
parameters.
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2. In effect, they involve a large number of options or
“parameters’ that are hard to select from the data.

3. They are computationally intensive making it
difficult to test a model or perform sensitivity
analysis and to compare different models.

The objective of this work is to present an alternative
nonlinear estimation method that has the following
advantages:

1. Parsimony, i.e., it uses empirical models with few
parameters, a major consideration in any estima-
tion method.

2. Availability of practical methods for parameter
estimation and model testing.

3. Computational efficiency. Following a transforma-
tion, the data are analyzed using linear geostatis-
tical methods.

4. To some extent, applicability using available
geostatistical codes.

In terms of organization, the paper consists of two
parts: the first part presents the theoretical basis of the
approach and the second part describes how the
methodology is used in practice and presents some
examples.

THE MODEL
Transformation

Consider a positive spatial process z(x) (i.e., z(x) > 0)
and the transformation

z(x)——l, if K #£0

ifk=0

y(x) = ()

In[z(x)],

where k is a parameter. This transformation is
frequently used in statistics.*'®!"! Transformations
have also been used in geostatistics (e.g., Verly'?) with
emphasis on the logarithmic transformation. This paper
develops a new method for determining the transforma-
tion parameter and applies it to a wider class (not just
ordinary kriging) than other works.

The basic premise is that y(x) may be modeled as a
multi-Gaussian process. For example, if z(x) is the
concentration at location x and k=0, then the
logarithm of the concentration, y(x), is modeled as
multi-Gaussian and we say that the concentration z(x) is
log-Gaussian distributed. The log-Gaussian distribution
is quite useful in applications and has been the subject of
several studies in the context of estimation of spatial
functions (e.g., Switzer and Parker'®). Note that
transformation (1), which is known as the power
transformation, is more general because it includes the
untransformed case (x = 1), the square root transforma-
tion (k = 1), etc.

In essence, our model is that the experimental z(x) is a
realization of a random field with a multivariate
probability distribution that includes as special cases
the Gaussian, the log-Gaussian, and other distributions.
The parameters of this model are:

(1) the parameters of a geostatistical model for the
transformed data;
(2) the transformation parameter x.

For a given «, we can proceed to transform the data
and to fit a geostatistical model to the transformed
data. However, how do we judge which « fits the
data? The fit of the variogram to the transformed data
is not a reliable criterion. For instance, for concentra-
tion data, the logarithmic transformation may produce
“better behaving” data (because it suppresses more of
the variability of the original data) than the less
drastic square root transformation. However, because
we want to predict concentrations, we must at the end
back-transform from y to z, which means computing
the exponent if x =0 or computing the square if
& =1 The best estimate and confidence interval of z
depend much more on the higher moments of y if we
obtain z from y through exponentiation than through
squaring. Because of inherent uncertainties about
higher moments, exponentiation is less desirable than
squaring.

Thus, we should select the transformation para-
meter and the variogram of the transformed data
jointly in order to fit a model to the concentration
measurements rather than to their transformation. A
way to achieve this goal is to apply maximum
likelihood estimation methods to determine the value
of the parameter .5

Geostatistical model

The probability distribution of process z is defined from
the distribution of process y through the transformation
of eqn (1). We will assume initially that the mean
function and the covariance function of y are known
expressions involving some parameters which we will
estimate from data; but we will soon see how to relax
these assumptions as is the geostatistical practice (i.e., if
y(x) is intrinsic, we will only need to estimate the
parameters of its variogram).

We will facilitate the derivation by wusing a
compact vector notation that is common in statistics.
Let:

N

y = n by 1 vector of transformed data, i.e., y = y2

Yn

m = n by 1 mean of y, i.e., the ith element of m is the
expected value of y;; Q = n by n covariance matrix of y,
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i.e., the ijth element of Q is the covariance between y;
and y;;

4

.. . Z

z = n by 1 vector of original data, i.e., z = 2

Zn

In linear geostatistics, the mean is a linear function of
the drift coefficients. Thus,

m = Xj3 ()

where X is an # x p matrix of known coefficients and 3 is
the p x 1 vector of the coefficients of the mean, also
known as drift coefficients (see Kitanidis'* for a more
detailed discussion of this model in the context of
geostatistics). The covariance matrix is a function of
some parameters 6,

Q=Q(6) 3)

For illustration, consider the intrinsic case with
exponential covariance function: p =1, G =the con-
stant mean of the intrinsic function, and

The ij th element of Q is 8, exp(—|x; — x;|/6,), where &
is the variance and 6, is the correlation length.

ML PARAMETER ESTIMATION

The probability density function p(y) of y is Gaussian
with mean m and covariance Q,

p(y) = (2m) " det/Q] "/ exp(~ 1 (y —m)"Q "' (y - m))
(4)

where det[ ] indicates determinant, ~' inverse, and 7
transpose of a matrix.
The pdf p(z) of the original data is

(5)

p(e) = ()|

where |dy/dz| is the absolute value of the Jacobian
determinant of the data transformation. Since:

%) -1
e

In[z(x;)], ifx=0
then
dy _ . k-1
o = 11200 ©)

Thus, the distribution of the original data z(x) for any
n sampling locations z(x), z(x;),...,z(x,) is

p(z) = (2r) "/ *det[Q] /2

X eXP(— % (y-m)’Q'(y— m)) JJEC.

i=1
(7)

The parameters of the model are x and the parameters
of the mean and the covariance function of the process
y(x). If these parameters are unknown but z(x,),
z(X,),...2z(x,) are available, then eqn (7) represents
the likelihood of the data and is proportional to the
probability distribution of the parameters given the
data. In the maximum likelihood (ML) method, esti-
mates of the parameters are obtained by maximizing the
likelihood function. In practice, it is more convenient to
minimize minus the logarithm of the likelihood function:

L(3,0,x) = In(2n) + 3 In(det(Q))

N —

+5(y-m’Q ' (y—m)—In (H Z(Xi)""l) (8)
i=1

This can be written as the sum of two functions:
L(B,8,k) = L,(B,0|x) + L,() (9)

where

L,(B3,0]x) = gln(27r) + %ln(det[Q])

(y-m)'Q ' (y —m) (10)
L,(k)=~In (ﬁz(x,-)’“_l) (11)
i=1

Thus, parameter estimation in the ML approach can
proceed as follows:

N

+

1. For a given value of &, transform the data and find
the parameters 3 and ¢ which minimize L,. This
can be achieved using methods described in
Kitanidis and Lane."® Additionally, compute L,

2. Repeat the procedure with another value of .

3. Select the value of x that minimizes the sum
L+ L,

RML PARAMETER ESTIMATION

In ordinary and universal kriging, the values of the drift
parameters are not required because unbiasedness
constraints are introduced to make the estimator
independent of these coefficients. Furthermore, instead
of the ordinary covariance function, the process may
be characterized by the generalized covariance
function which can be estimated from the data without
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knowledge of the drift coefficients.>'® For example,
intrinsic functions employed in ordinary kriging are
characterized by the variogram, which is the negative of
a generalized covariance function. The point is that, in
practice, one is interested in estimating the parameters
of a generalized covariance function.

As discussed in detail in Kitanidis,!” the parameters of
the generalized covariance function can be obtained by
maximizing the marginal distribution of the covariance
function parameters conditional on the data, i.e., the
distribution obtained after averaging over all possible
values of the drift coefficients. For a given value of k, the
marginal probability density function of 8 can be
obtained from the joint probability density function of
(3, 8) through integration over 8. Thus, making use of

eqn (2):
J (om et 2 exp (- bty - m)TQ(y — m))dg
= (2m)~ " P2 det[Q] " *det[X"Q'X] "/
x exp(—3yT(Q7 - Q'X(XTQ7'X)'X"Q )y)
(12)

This method is known as restricted maximum like-
lihood (RML). The same result can be obtained as
follows: transform the data into a set of n—p
authorized increments and write down its likelihood
function. Then maximize the value of the likelihood
function with respect to the parameters of the covari-
ance function. The RML method has deep roots in
statistical inference, in relation to the fundamental
problem of eliminating unwanted parameters (see, e.g.,
discussion in Edwards'®). Patterson and Thompson'
introduced such a method in the context of analysis of
variance problems and Kitanidis® introduced RML in
the inference of random fields and showed for the first
time that RML is a general method for the estimation of
generalized covariance functions used by Matheron.?
For the latter problem, the unwanted parameters are
the drift coefficients and the problem is how to
make inferences without dealing with values for these
parameters.

The expression for minus the logarithm of the
restricted loglikelihood of the data is:

R(8, k) = Ry(6]x) + Ly(r) (13)

where

Ry(6l) =" Pin(2rm) + %ln(det[Q])
+3iIn(detX"Q™'X))

+277(@7 - QXXTQX) X Yy (14)

L,(k)y=—1In (ﬁ z(xi)"_l) (15)
i=1

Thus, parameter estimation in the RML approach can
proceed as follows:

1. For a given value of « transform the data and find
the parameters 6 which minimize R,. Additionally,
compute L.

2. Select the value of x which optimizes the sum
R, + L,.

ESTIMATION

Once the appropriate transformation parameter has
been computed and the geostatistical model of the
transformed data has been selected, it is a straight-
forward task to infer the transformed variable using a
BLUE method, such as ordinary kriging. Kriging
provides at each point a best estimate, y, and a mean
square estimation error, o2. Under the assumption that
the transformed variable is multi-Gaussian, the best
estimate is the conditional mean and the mean square
error is the conditional variance.

However, in most applications, we are expected to
present the resuits in terms of concentrations (the
original variable) and not the transformed variable. It
is straightforward to write down the probability dis-
tribution of the concentration conditional on the
observations and the modeling assumptions outlined

above.
a2
p(z) = (2m0?) "2 exp (— %’2—”—) 7 ifk=0
g
(16)
1\

2y —1/2 ( K —y) 1

p(2) = 2mo?) V2 exp 52 A
if Kk #0 (17)

This distribution is not Gaussian and not even
symmetric, except of course in the trivial case that
k = 1. One difficulty with non-symmetric distributions is
that there is no single number that can be used as a
representative value because the median, the mode,
and the mean differ from each other. They are given
below.

Median. The median is the value that is exceeded
50% of the time. When one makes a one-to-one
transformation, the median transforms to the median.
Thus,

med(z) = (kp+ 1)5, ifx#0 (18)
exp[y], ifr=0

Mode. The mode is the most likely value. That is,
it corresponds to the point where the probability
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distribution has a maximum.

1+nyA+\/1+4»w2(re—1)+'¢f’(2+"iﬁ))]E if 1 # 0

mod(z) = ( 2
exp[y — o],
Mean. The mean is

m($, 0%, K) if Kk #0

2 (20)
explp+0°/2], if k=0

mean(z) = {
where m( ﬁ,az,n) is a function, presented in a series
form in the Appendix, that depends on j, o2, and .

Typically. concentration measurements are positively
skewsd so that mod(z) < med(z) < mean(z). See, e.g.,
Fig. 2 that shows p(z) and the mode, median, and mean
for y =4, 0% =1, k = 0. Of those three, the median is
the most straightforward to compute and is more stable
(i.e., less affected by sampling error and more resistant
to extremes) than the mean in the case of skewed
distributions. For this reason, in many applications, the
median is preferable as a “point” or “best” estimate.
The median is unbiased in the sense that the error has
equal chances of being positive or negative. However, in
the expected value sense, the median tends to under-
estimate the true value, since the median is less than the
mean.

In linear estimation, the accuracy of the estimate is
usually given through the mean square error or the
standard estimation error (also known as root mean
square error). It is feasible to calculate the mean square
error:

var(z) = (P, 0%, k) if k#£0
exp2y + o%)(explo?] — 1), if k=0

21

where v(§, 0%, £) in series form is given in the Appendix.

The mean square error is useful when the distribution
of the errors is nearly Gaussian so that the mean square
error describes adequately the distribution of the errors

p(2)

oo1z| Arode

0.008 edian

0.004 ean
0

50 100 150 200 250 300 350 400
z

Fig. 2. Mode, median, and mean of lognormal distribution.

(19
ifk=0

about the representative value. However, for skewed
distributions, such as the one shown in Fig. 2, there is no
single measure of spread that is universally satisfactory.
In exploratory analysis, the interquartile range (or “Q-
spread”) is used. The interquartile range is the difference
between the 0-75 quantile (i.e., the value that is not
exceeded 75% of the time) and the 0-25 quantile.

The most straightforward approach is to compute the
0-25 and 0-75 quantiles and also the interquartile range.
This is accomplished as follows:

Yo-75 ¥y -+ 0-6750 (22)

_}70.25 = j} — 06750
Then back-transform to find the 2,5 and the Z;.,5 values
and finally compute the interquartile range

I, = Zp95 — 25 (23)

The result of concentration estimation is then pre-
sented graphically as shown in Fig. 3. This plot shows
the best estimate, the range of values that contain the
concentration with probability 50%, and also shows the
asymmetry in the estimation errors.

APPLICATION

We will illustrate the approach using data from a sand
aquifer where the groundwater is contaminated with
trichloroethylene (TCE) and its products from natural
anaerobic reductive dechlorination.! Water samples
were collected on five vertical transects at multiple
wells and levels (depths) and analyzed at the laboratory

— 0.75 quantile

el Median

L1 0.25 guantile

Fig. 3. Representative value and error bar of concentration
estimate.
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to measure the concentration of some organic and
inorganic compounds. All these concentration data were
then analyzed using the techniques presented in this
work and contour maps were prepared depicting the
distribution of the mass of each compound over each
cross-section. The objective of this study was to
illuminate how TCE degrades under natural conditions
and particularly to study the effect of redox conditions.
Here, for illustrative purposes, we will summarize the
results of the analysis of the TCE data from transect 1, a
data set which contains 58 measurements.

Before starting, let us review the three basic steps
involved in the development of an empirical model:

(1) Exploratory analysis is where data and other
information are used to select the type of models
to be considered. Then a model with a few
adjustable parameters is tentatively chosen.

(2) Parameter estimation means obtaining from the
data good estimates of the parameters conditional
on the adequacy of the assumed model.

(3) Validation or diagnostic checking is defined as
“checking the fitted model in its relation to the
data with intent to reveal model inadequacies and
so to achieve model improvement” (Box and
Jenkins,” p. 171). Diagnostic checking may result
in a new model, in which case the procedure must
be repeated.

Attention was limited to the class of models described
in this work, which includes as special cases ordinary
and log-Gaussian kriging with isotropic or anisotropic
covariance functions or variograms. The parameter
estimation problem is thus reduced to selection of the
transformation parameter x and the variogram of the
transformed variable. Diagnostic checking is performed
through evaluation of the residuals.

For the TCE concentration data set, we performed
the power transformation for different x values, with &
increasing from 0 to 1 with increments of 0-1. The
geostatistical model that we used for the transformed
data is intrinsic isotropic with a linear variogram,

340 log-likelihood function
for different x values
300}

O 260}

220t

180

0 01 02 03 04 05 06 07 08 09 1
K

Fig. 4. Optimization of the value of the x parameter.

Table 1. Parameter estimation of the trans-

formed TCE data

« & c¢R R

1 0-2670 3-349 164-6
2 0-1249 278 159-3
4 0-06169 2-333 154-3
5 0-05172 2:289 153-8
6 0-04609 2:304 154-0
7 0-04268 2-356 154-3

v(h) = 8,h. Implementing the RML parameter estima-
tion method, we found the slope 4, for each « value and
computed the sum R, + L,. The results, which are
shown in Fig. 4, indicate that the value of s that
optimizes the sum R = R, + L, in the interval [0, 1] is
& = 0. Thus, tentatively, the logarithmic transformation
is selected for this case. The original TCE concentration
data is extremely skewed, while the distribution of their
logarithms is much closer to the Gaussian. Note,
however, that since the log-concentration observations
are correlated, one cannot perform one of the common
goodness-of-fit tests, such as Filliben.?! Instead, the
important question is whether orthonormal residuals are
Gaussian-like and this question can be answered
through goodness-of-fit tests.

Next, we proceed with the linear geostatistical
analysis of the transformed data. It appears that the
correlation decays faster in the vertical direction than in
the horizontal direction. To account for this anisotropy
in the correlation structure, we introduced an additional
parameter, «, that stretches the vertical coordinate,
rendering the correlation structure isotropic (in the
transformed domain). We focused on a variogram that
is the superposition of the nugget and the linear but
when we optimized we found that the nugget effect
vanishes. From Table 1 we see that the best estimates are:

« (the stretching coefficient) = 5,

6, (the slope of the variogram) = 0-05172.

In Table 1, cR is the geometric mean of the variances
of the orthonormal residuals of the transformed
residuals® and measures the goodness of fit of the
model to the transformed data. We also confirmed that
for the above value of the stretching coeflicient, the
optimal value of « is still 0.

The exponential variogram model is also considered.
The estimation of the model parameters yielded the
mode: y(h) = 10(1 — exp(—#/200)). However, the fit
(value of cR) is practically the same as with the simpler
linear model. For this reason, we kept the simpler linear
one.

Before using the linear model to make predictions, we
tested the residuals of the process and compared with
the ordinary kriging approach:

e The orthonormal residuals conformed to the
Gaussian distribution at the 95% significance
level. Their histogram is shown in Fig. 5.
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Fig. 5. Histogram of orthonormal residuals of TCE data.

e For comparison purposes, we used as base
approach ordinary kriging with a variogram fitted
graphically on the experimental variogram of the
original data, as shown in Fig. 6. We then

Shen

12000

8000
¥(h)

4000

0 5 10 15 20
h

Fig. 6. Variogram of original TCE data.

compared the fit of the two approaches as follows.
We used the first observation to predict the second
TCE observation, the first two observations to
predict the third, and so on. The mean absolute
error using our approach was 40% smaller than
that of the base procedure. The suboptimality of

Estimated Median of TCE (unit: uMole/L)

-40
50
g -
= -60
2 .70
=]
.80 =
90— T T T
0 100 200 300
Horizontal Location (ft)
Contour map of 0.25 Quantile (Unit: uMole/L)
-40
- -50
€ 40+
<
_g- -70 -
-80
90— T T T
0 100 200 300
Horizontal Location (ft)
Contour map of 0.75 Quantile for TCE (unit: uMole/L)
-40
. =501
&
= -60 -
[~ =70 ~
3
-80
-90 - T
0 300

Horizontal Location (ft)

Fig. 7. Contour maps of the median, the lower quartile,

and the upper quartile of TCE estimates.
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the base approach is partially due to the fact that
the residuals are severcly non-Gaussian. The
orthonormal residuals of the base approach fail
the Filliben test for normality even at the 75%
significance level.

Figure 7 shows the representative value (median) and
the lower and upper quartiles of the TCE concentration
as estimated from the linear model. The physical
significance of the results is discussed in Semprini
et al.,' where additional results from the application of
this methodology are presented.

CONCLUDING REMARKS

BLUE and other linear interpolators are prevalent in
solving interpolation problems. However, the direct
application of BLUE methods in interpolating solute
concentration measurements may lead to poor estimates
and questionable error bars, when the distribution of
data violates assumptions implicit in BLUE.

One way to improve estimation is by introducing
additional information such as information embedded
in models of flow, transport, and chemical transfor-
mation, as in Graham and McLaughlin.?> This
approach would be preferable in principle, because
the structure used in interpolation of data would be
based on physical considerations. However, in the
study that motivated our work! and in many other
cases encountered in practice, these physical and
chemical processes are complex, inadequately under-
stood, and involve many other parameters. If observa-
tions of concentration are sufficiently dense, a more
practicable approach is to describe the structure
through empirical models that are properly selected
using statistical methods and are simple to apply in
drawing isoconcentration lines.

We proposed here a relatively simple nonlinear
interpolation method that is based on a convenient
nonlinear transformation in combination with linear
estimation methods. We discussed the logical under-
pinnings of the method, developed the tools for its
implementation, showed its application to an actual
case, and showed that the results compare favorably
with the base case of interpolation through ordinary
kriging.
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APPENDIX

For the case « # 0, the mean is

-1 ¥
] K -y
mean(z) =J @ro?)dexp (- >L 2 |1,

252

= Jio(27roz)'% exp ity };)2] (y& + 1)dy

Using the Taylor series expansion for ( yx + 1)i about
the mean j:

(yo+ 1) = (1+ &) + (1 + Py (y - 5)
(1 )(1+~y)“2(y )
+M§Tl—)(l+~y) SBy-9+-
1—6)(1-2k)---[1=(n-1)&
+( ) )n! [1-( )«
x (1+ Kpy"(y = ).

then we substitute this into the equation for mean (z)
and get

(K)

mean(z) = (1 + &p)* + 0 + P20 +0

1 - k)(1-2k)(1 - 3k)
MR TR LI

(1+5

(14 &§)"3.0* +0

0
+{(1—n)(1—2n)--~(1—

n!

As for the variance o2, we can use the relationship
mean(z)?, and E[z%] can be calculated by

= E[z?] -
the following equation:

)
E[ZY] = J (2#02)'% exp —n2—2— 2 22y
—00 ag
00 i _ 52
=j_ (2no?) Fexp —(yzazy) ] <y + Dy

(”_l)")(1+,§};)£-".1.3.5...
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Similarly, we use the Taylor series expansion for

(ye+1 )% about the mean :
(v + D% = (14 &) + 2+ (1 + &P (y - 7)

+ 2= K)(1+ 1)) 2y - 5)?

+220B22 4y sy -4

3
oy 2-r)(2- 25)’;!- ‘2= (n-1)k]
x (14 K9)"(y = 9"
Then E[z*] becomes:
(1+£5)* + 2 = K)(1 + KP)* 20

4 2= r)(2 = 26)(

2238) (1 4 kpte3.0%

12 +...
0 if n =o0dd
2
+¢ (2= K)2=26)--- 2~ (n - 1)A]
x(l+nﬁ)5””-1-3-5---(n—1)0", if n =even

if n = odd

(n—1)a" if n=even



